沃新书屋 - TensorFlow机器学习项目实战 - pdf 网盘 高速 下载地址大全 免费
本书资料更新时间:2025-05-10 04:09:14

TensorFlow机器学习项目实战 pdf 网盘 高速 下载地址大全 免费

TensorFlow机器学习项目实战精美图片
其他格式下载地址

TensorFlow机器学习项目实战书籍详细信息


内容简介:

TensorFlow是Google所主导的机器学习框架,也是机器学习领域研究和应用的热门对象。 本书主要介绍如何使用TensorFlow库实现各种各样的模型,旨在降低学习门槛,并为读者解决问题提供详细的方法和指导。全书共10章,分别介绍了TensorFlow基础知识、聚类、线性回归、逻辑回归、不同的神经网络、规模化运行模型以及库的应用技巧。 本书适合想要学习和了解 TensorFlow 和机器学习的读者阅读参考。如果读者具备一定的C++和Python的经验,将能够更加轻松地阅读和学习本书。

书籍目录:

第1章 探索和转换数据 1 1.1 TensorFlow的主要数据结构— 张量 1 1.1.1 张量的属性—阶、形状和 类型 1 1.1.2 创建新的张量 3 1.1.3 动手工作—与TensorFlow 交互 4 1.2 处理计算工作流—TensorFlow 的数据流图 5 1.2.1 建立计算图 5 1.2.2 数据供给 6 1.2.3 变量 6 1.2.4 保存数据流图 6 1.3 运行我们的程序—会话 8 1.4 基本张量方法 8 1.4.1 简单矩阵运算 8 1.4.2 序列 11 1.4.3 张量形状变换 12 1.4.4 数据流结构和结果可视化— TensorBoard 14 1.5 从磁盘读取信息 18 1.5.1 列表格式—CSV 18 1.5.2 读取图像数据 19 1.5.3 加载和处理图像 20 1.5.4 读取标准TensorFlow格式 21 1.6 小结 21 第2章 聚类 22 2.1 从数据中学习—无监督学习 22 2.2 聚类的概念 22 2.3 k均值 23 2.3.1 k均值的机制 23 2.3.2 算法迭代判据 23 2.3.3 k均值算法拆解 24 2.3.4 k均值的优缺点 25 2.4 k最近邻 25 2.4.1 k最近邻算法的机制 26 2.4.2 k-nn的优点和缺点 26 2.5 有用的库和使用示例 27 2.5.1 matplotlib绘图库 27 2.5.2 scikit-learn数据集模块 28 2.5.3 人工数据集类型 28 2.6 例1—对人工数据集的k均值 聚类 29 2.6.1 数据集描述和加载 29 2.6.2 模型架构 30 2.6.3 损失函数描述和优化循环 31 2.6.4 停止条件 31 2.6.5 结果描述 31 2.6.6 每次迭代中的质心变化 32 2.6.7 完整源代码 32 2.6.8 k均值用于环状数据集 34 2.7 例2—对人工数据集使用最近 邻算法 36 2.7.1 数据集生成 36 2.7.2 模型结构 36 2.7.3 损失函数描述 37 2.7.4 停止条件 37 2.7.5 结果描述 37 2.7.6 完整源代码 37 2.8 小结 39 第3章 线性回归 40 3.1 单变量线性模型方程 40 3.2 选择损失函数 41 3.3 最小化损失函数 42 3.3.1 最小方差的全局最小值 42 3.3.2 迭代方法:梯度下降 42 3.4 示例部分 43 3.4.1 TensorFlow中的优化方法— 训练模块 43 3.4.2 tf.train.Optimizer类 43 3.4.3 其他Optimizer实例类型 44 3.5 例1—单变量线性回归 44 3.5.1 数据集描述 45 3.5.2 模型结构 45 3.5.3 损失函数描述和Optimizer 46 3.5.4 停止条件 48 3.5.5 结果描述 48 3.5.6 完整源代码 49 3.6 例2—多变量线性回归 51 3.6.1 有用的库和方法 51 3.6.2 Pandas库 51 3.6.3 数据集描述 51 3.6.4 模型结构 53 3.6.5 损失函数和Optimizer 54 3.6.6 停止条件 55 3.6.7 结果描述 55 3.6.8 完整源代码 56 3.7 小结 57 第4章 逻辑回归 58 4.1 问题描述 58 4.2 Logistic函数的逆函数—Logit 函数 59 4.2.1 伯努利分布 59 4.2.2 联系函数 60 4.2.3 Logit函数 60 4.2.4 对数几率函数的逆函数— Logistic函数 60 4.2.5 多类分类应用—Softmax 回归 62 4.3 例1—单变量逻辑回归 64 4.3.1 有用的库和方法 64 4.3.2 数据集描述和加载 65 4.3.3 模型结构 67 4.3.4 损失函数描述和优化器 循环 67 4.3.5 停止条件 68 4.3.6 结果描述 68 4.3.7 完整源代码 69 4.3.8 图像化表示 71 4.4 例2—基于skflow单变量逻辑 回归 72 4.4.1 有用的库和方法 72 4.4.2 数据集描述 72 4.4.3 模型结构 72 4.4.4 结果描述 73 4.4.5 完整源代码 74 4.5 小结 74 第5章 简单的前向神经网络 75 5.1 基本概念 75 5.1.1 人工神经元 75 5.1.2 神经网络层 76 5.1.3 有用的库和方法 78 5.2 例1—非线性模拟数据 回归 79 5.2.1 数据集描述和加载 79 5.2.2 数据集预处理 80 5.2.3 模型结构—损失函数 描述 80 5.2.4 损失函数优化器 80 5.2.5 准确度和收敛测试 80 5.2.6 完整源代码 80 5.2.7 结果描述 81 5.3 例2—通过非线性回归,对 汽车燃料效率建模 82 5.3.1 数据集描述和加载 82 5.3.2 数据预处理 83 5.3.3 模型架构 83 5.3.4 准确度测试 84 5.3.5 结果描述 84 5.3.6 完整源代码 84 5.4 例3—多类分类:葡萄酒 分类 86 5.4.1 数据集描述和 加载 86 5.4.2 数据集预处理 86 5.4.3 模型架构 87 5.4.4 损失函数描述 87 5.4.5 损失函数优化器 87 5.4.6 收敛性测试 88 5.4.7 结果描述 88 5.4.8 完整源代码 88 5.5 小结 89 第6章 卷积神经网络 90 6.1 卷积神经网络的起源 90 6.1.1 卷积初探 90 6.1.2 降采样操作—池化 95 6.1.3 提高效率—dropout 操作 98 6.1.4 卷积类型层构建办法 99 6.2 例1—MNIST数字分类 100 6.2.1 数据集描述和加载 100 6.2.2 数据预处理 102 6.2.3 模型结构 102 6.2.4 损失函数描述 103 6.2.5 损失函数优化器 103 6.2.6 准确性测试 103 6.2.7 结果描述 103 6.2.8 完整源代码 104 6.3 例2—CIFAR10数据集的图像 分类 106 6.3.1 数据集描述和加载 107 6.3.2 数据集预处理 107 6.3.3 模型结构 108 6.3.4 损失函数描述和 优化器 108 6.3.5 训练和准确性测试 108 6.3.6 结果描述 108 6.3.7 完整源代码 109 6.4 小结 110 第7章 循环神经网络和LSTM 111 7.1 循环神经网络 111 7.1.1 梯度爆炸和梯度消失 112 7.1.2 LSTM神经网络 112 7.1.3 其他RNN结构 116 7.1.4 TensorFlow LSTM有用的类和 方法 116 7.2 例1—能量消耗、单变量时间序 列数据预测 117 7.2.1 数据集描述和加载 117 7.2.2 数据预处理 118 7.2.3 模型结构 119 7.2.4 损失函数描述 121 7.2.5 收敛检测 121 7.2.6 结果描述 122 7.2.7 完整源代码 122 7.3 例2—创作巴赫风格的 曲目 125 7.3.1 字符级模型 125 7.3.2 字符串序列和概率表示 126 7.3.3 使用字符对音乐编码— ABC音乐格式 126 7.3.4 有用的库和方法 128 7.3.5 数据集描述和加载 129 7.3.6 网络训练 129 7.3.7 数据集预处理 130 7.3.8 损失函数描述 131 7.3.9 停止条件 131 7.3.10 结果描述 131 7.3.11 完整源代码 132 7.4 小结 137 第8章 深度神经网络 138 8.1 深度神经网络的定义 138 8.2 深度网络结构的历史变迁 138 8.2.1 LeNet 5 138 8.2.2 Alexnet 139 8.2.3 VGG模型 139 8.2.4 第一代Inception模型 140 8.2.5 第二代Inception模型 141 8.2.6 第三代Inception模型 141 8.2.7 残差网络(ResNet) 142 8.2.8 其他的深度神经网络 结构 143 8.3 例子—VGG艺术风格转移 143 8.3.1 有用的库和方法 143 8.3.2 数据集描述和加载 143 8.3.3 数据集预处理 144 8.3.4 模型结构 144 8.3.5 损失函数 144 8.3.6 收敛性测试 145 8.3.7 程序执行 145 8.3.8 完整源代码 146 8.4 小结 153 第9章 规模化运行模型—GPU和 服务 154 9.1 TensorFlow中的GPU支持 154 9.2 打印可用资源和设备参数 155 9.2.1 计算能力查询 155 9.2.2 选择CPU用于计算 156 9.2.3 设备名称 156 9.3 例1—将一个操作指派给 GPU 156 9.4 例2—并行计算Pi的数值 157 9.4.1 实现方法 158 9.4.2 源代码 158 9.5 分布式TensorFlow 159 9.5.1 分布式计算组件 159 9.5.2 创建TensorFlow集群 160 9.5.3 集群操作—发送计算方法 到任务 161 9.5.4 分布式编码结构示例 162 9.6 例3—分布式Pi计算 163 9.6.1 服务器端脚本 163 9.6.2 客户端脚本 164 9.7 例4—在集群上运行分布式 模型 165 9.8 小结 168 第10章 库的安装和其他技巧 169 10.1 Linux安装 169 10.1.1 安装要求 170 10.1.2 Ubuntu安装准备(安装操作的 前期操作) 170 10.1.3 Linux下通过pip安装 TensorFlow 170 10.1.4 Linux下从源码安装 TensorFlow 175 10.2 Windows安装 179 10.2.1 经典的Docker工具箱 方法 180 10.2.2 安装步骤 180 10.3 MacOS X安装 183 10.4 小结 185

作者简介:

Rodolfo Bonnin是一名系统工程师,同时也是阿根廷国立理工大学的博士生。他还在德国斯图加特大学进修过并行编程和图像理解的研究生课程。 他从2005年开始研究高性能计算,并在2008年开始研究和实现卷积神经网络,编写过一个同时支持CPU和GPU的神经网络前馈部分。最近,他一直在进行使用神经网络进行欺诈模式检测的工作,目前正在使用ML技术进行信号分类。 感谢我的妻子和孩子们,尤其感谢他们在我写这本书时表现出的耐心。感谢本书的审稿人,他们让这项工作更专业化。感谢Marcos Boaglio,他安装调试了设备,以使我能完成这本书。

其它内容:

暂无其它内容!


下载点评

  • 如获至宝(835+)
  • 缺章(261+)
  • 自动(801+)
  • 清晰(976+)
  • 云同步(827+)
  • 适配(445+)
  • 高清(720+)
  • MOBI(460+)
  • 考证(800+)
  • 影印(973+)
  • 双语(307+)
  • 宝藏(332+)
  • 低清(438+)
  • 可听读(584+)
  • 最新(291+)
  • 优质(649+)
  • 学者(845+)
  • 感谢(163+)
  • 可编辑(244+)

下载评论

  • 用户1723807013: ( 2024-08-16 19:16:53 )

    音频版电子书下载极速,支持MOBI/AZW3格式导出,体验良好。

  • 用户1727096445: ( 2024-09-23 21:00:45 )

    高清的学术资源,音频设计提升阅读体验,体验良好。

  • 用户1723744628: ( 2024-08-16 01:57:08 )

    音频版电子书下载秒传,支持PDF/AZW3格式导出,资源优质。

  • 用户1744357587: ( 2025-04-11 15:46:27 )

    秒传下载PDF/EPUB文件,精校教材推荐收藏,资源优质。

  • 用户1729580393: ( 2024-10-22 14:59:53 )

    优质版本小说资源,AZW3/TXT格式适配各种阅读设备,值得收藏。


相关书评


以下书单推荐