渐近统计 azw3 网盘 高速 下载地址大全 免费

azw3电子书下载地址
其他格式下载地址
- 下载地址
- [pdf] 渐近统计
内容简介:
本书是一部介绍渐近统计经典教材,内容实用而且数学理论论述严谨。书中除了介绍介绍渐近统计的核心内容——似然推断,M估计,渐近效率,U统计和秩过程,书中还涉及该领域的新研究论题,如半参数模型,自助法,经验过程,等其他应用。本书各章有习题。
书籍目录:
Preface
Notation
1. Introduction
1.1. Approximate Statistical Procedures
1.2. Asymptotic Optimality Theory
1.3. Limitations
1.4. The Index n
2. Stochastic Convergence
2.1. Basic Theory
2.2. Stochastic o and O Symbols
2.3. Characteristic Functions
2.4. Almost-Sure Representations
2.5. Convergence of Moments
2.6. Convergence-Determining Classes
2.7. Law of the Iterated Logarithm
2.8. Lindeberg-Feller Theorem
2.9. Convergence in Total Variation
Problems
3. Delta Method
3.1. Basic Result
3.2. Variance-Stabilizing Transformations
3.3. Higher-Order Expansions
3.4. Uniform Delta Method
3.5. Moments
Problems
4. Moment Estimators
4.1. Method of Moments
4.2. Exponential Families
Problems
5. M- and Z-Estimators
5.1. Introduction
5.2. Consistency
5.3. Asymptotic Normality
5.4. Estimated Parameters
5.5. Maximum Likelihood Estimators
5.6. Classical Conditions
5.7. One-Step Estimators
5.8. Rates of Convergence
5.9. Argmax Theorem
Problems
6. Contiguity
6.1. Likelihood Ratios
6.2. Contiguity
Problems
7. Local Asymptotic Normality
7.1. Introduction
7.2. Expanding the Likelihood
7.3. Convergence to a Normal Experiment
7.4. Maximum Likelihood
7.5. Limit Distributions under Alternatives
7.6. Local Asymptotic Normality
Problems
8. Efficiency of Estimators
8.1. Asymptotic Concentration
8,2, Relative Efficiency
8.3. Lower Bound for Experiments
8.4. Estimating Normal Means
8.5. Convolution Theorem
8.6. Almost-Everywhere Convolution Theorem
8.7. Local Asymptotic Minimax Theorem
8.8. Shrinkage Estimators
8.9. Achieving the Bound
8.10. Large Deviations
Problems
9. Limits of Experiments
9.1. Introduction
9.2. Asymptotic Representation Theorem
9.3. Asymptotic Normality
9.4. Uniform Distribution
9.5. Pareto Distribution
9.6. Asymptotic Mixed Normality
9.7. Heuristics
Problems
10. Bayes Procedures
10.1. Introduction
10.2. Bernstein-von Mises Theorem
10.3. Point Estimators
10.4. Consistency
Problems
11. Projections
11.1. Projections
11.2. Conditional Expectation
11.3. Projection onto Sums
11.4. Hoeffding Decomposition
Problems
12. U-Statistics
12.1. One-Sample U-Statistics
12.2. Two-Sample U-statistics
12.3. Degenerate U-Statistics
Problems
13. Rank, Sign, and Permutation Statistics
13.1. Rank Statistics
13.2. Signed Rank Statistics
13.3. Rank Statistics for Independence
13.4. Rank Statistics under Alternatives
13.5. Permutation Tests
13.6. Rank Central Limit Theorem
Problems
14. Relative Efficiency of Tests
14.1. Asymptotic Power Functions
14.2. Consistency
14.3. Asymptotic Relative Efficiency
14.4. Other Relative Efficiencies
14.5. Rescaling Rates
Problems
15. Efficiency of Tests
15.1. Asymptotic Representation Theorem
15.2. Testing Normal Means
15.3. Local Asymptotic Normality
15.4. One-Sample Location
15.5. Two-Sample Problems
Problems
16. Likelihood Ratio Tests
16.1. Introduction
16.2. Taylor Expansion
16.3. Using Local Asymptotic Normality
16.4. Asymptotic Power Functions
16.5. Bartlett Correction
16.6. Bahadur Efficiency
Problems
17. Chi-Square Tests
17.1. Quadratic Forms in Normal Vectors
17.2. Pearson Statistic
17.3. Estimated Parameters
17.4. Testing Independence
17.5. Goodness-of-Fit Tests
17.6. Asymptotic Efficiency
Problems
18. Stochastic Convergence in Metric Spaces
18.1. Metric and Normed Spaces
18.2. Basic Properties
18.3. Bounded Stochastic Processes
Problems
19. Empirical Processes
19.1. Empirical Distribution Functions
19.2. Empirical Distributions
19.3. Goodness-of-Fit Statistics
19.4. Random Functions
19.5. Changing Classes
19.6. Maximal Inequalities
Problems
20. Functional Delta Method
20.1. yon Mises Calculus
20.2. Hadamard-Differentiable Functions
20.3. Some Examples
Problems
21. Quantiles and Order Statistics
21.1. Weak Consistency
21.2. Asymptotic Normality
21.3. Median Absolute Deviation
21.4. Extreme Values
Problems
22. L-Statistics
22.1. Introduction
22.2. Hajek Projection
22.3. Delta Method
22.4. L-Estimators for Location
Problems
23. Bootstrap
23.1. Introduction
23.2. Consistency
23.3. Higher-Order Correctness
Problems
24. Nonparametric Density Estimation
24.1 Introduction
24.2 Kernel Estimators
24.3 Rate Optimality
24.4 Estimating a Unimodal Density
Problems
25. Semiparametric Models
25.1 Introduction
25.2 Banach and Hilbert Spaces
25.3 Tangent Spaces and Information
25.4 Efficient Score Functions
25.5 Score and Information Operators
25.6 Testing
25.7 Efficiency and the Delta Method
25.8 Efficient Score Equations
25.9 General Estimating Equations
25.10 Maximum Likelihood Estimators
25.11 Approximately Least-Favorable Submodels
25.12 Likelihood Equations
Problems
References
Index
作者简介:
A. W. van der Vaart (A.W.范德瓦特,荷兰)有多部著作,本书是其代表作之一,还著有Weak Convergence and Empirical Processes: With Applications to Statistics。
其它内容:
暂无其它内容!
下载评论
-
用户1727693178:
( 2024-09-30 18:46:18 )
优质版本期刊资源,AZW3/TXT格式适配各种阅读设备,操作便捷。
-
用户1714996584:
( 2024-05-06 19:56:24 )
无损版本学术资源,PDF/EPUB格式适配各种阅读设备,推荐下载。
-
用户1721682832:
( 2024-07-23 05:13:52 )
图文功能搭配EPUB/AZW3格式,高清数字阅读体验,推荐下载。
-
用户1740319614:
( 2025-02-23 22:06:54 )
无损的报告资源,图文设计提升阅读体验,体验良好。
-
用户1728480776:
( 2024-10-09 21:32:56 )
多格式版电子书下载无延迟,支持PDF/TXT格式导出,值得收藏。
相关书评
暂时还没有人为这本书评论!
下载点评