沃新书屋 - 流式系统(影印版) - azw3 网盘 高速 下载地址大全 免费
本书资料更新时间:2025-05-02 19:34:23

流式系统(影印版) azw3 网盘 高速 下载地址大全 免费

流式系统(影印版)精美图片
其他格式下载地址

流式系统(影印版)书籍详细信息

  • ISBN:9787564183677
  • 作者:Tyler Akidau
  • 出版社:东南大学出版社
  • 出版时间:2019-6
  • 页数:329
  • 价格:128.00
  • 纸张:暂无纸张
  • 装帧:平装
  • 开本:暂无开本
  • 语言:暂无语言
  • 原作名:Streaming Systems
  • 适合人群:系统架构师, 软件工程师, 数据工程师, 大数据技术爱好者, 对流式数据处理有需求的技术人员, 计算机科学与技术专业学生
  • TAG:系统架构 / 系统设计 / 大数据 / 系统优化 / 分布式系统 / Java / 高并发 / 流式计算
  • 豆瓣评分:暂无豆瓣评分
  • 更新时间:2025-05-02 19:34:23

内容简介:

在传统的数据处理流程中,总是先收集数据,然后将数据放到DB中。当人们需要的时候通过DB对数据做query,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常的紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决问题。这就引出了一种新的数据计算结构---流计算方式。它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送到下一计算节点。本书讲解流计算原理。

书籍目录:

Preface Or: What Are You Getting Yourself Into Here? Part Ⅰ.The Beam Model 1.Streaming 101 Terminology: What Is Streaming? On the Greatly Exaggerated Limitations of Streaming Event Time Versus Processing Time Data Processing Patterns Bounded Data Unbounded Data: Batch Unbounded Data: Streaming Summary 2.The What, Where, When, and How of Data Processing Roadmap Batch Foundations: What and Where What: Transformations Where: Windowing Going Streaming: When and How When: The Wonderful Thing About Triggers Is Triggers Are Wonderful Things! When: Watermarks When: Early/On-Time~Late Triggers FTWI When: Allowed Lateness (i.e., Garbage Collection How: Accumulation Summary 3.Watermarks Definition Source Watermark Creation Perfect Watermark Creation Heuristic Watermark Creation Watermark Propagation Understanding Watermark Propagation Watermark Propagation and Output Timestamps The Tricky Case of Overlapping Windows Percentile Watermarks Processing-Time Watermarks Case Studies Case Study: Watermarks in Google Cloud Dataflow Case Study: Watermarks in Apache Flink Case Study: Source Watermarks for Google Cloud Pub/Sub Summary 4.Advanced Windowing When/Where: Processing-Time Windows Event-Time Windowing Processing-Time Windowing via Triggers Processing-Time Windowing via Ingress Time Where: Session Windows Where: Custom Windowing Variations on Fixed Windows Variations on Session Windows One Size Does Not Fit All Summary 5.Exactly-Once and Side Effects Why Exactly Once Matters Accuracy Versus Completeness Side Effects Problem Definition Ensuring Exactly Once in Shuffle Addressing Determinism Performance Graph Optimization Bloom Filters Garbage Collection Exactly Once in Sources Exactly Once in Sinks Use Cases Example Source: Cloud Pub/Sub Example Sink: Files Example Sink: Google BigQuery Other Systems Apache Spark Streaming Apache Flink Summary Part Ⅱ.Streams and Tables 6.Streams and Tables Stream-and-Table Basics Or: a Special Theory of Stream and Table Relativity Toward a General Theory of Stream and Table Relativity Batch Processing Versus Streams and Tables A Streams and Tables Analysis of MapReduce Reconciling with Batch Processing What, Where, When, and How in a Streams and Tables World What: Transformations Where: Windowing When: Triggers How: Accumulation A Holistic View Of Streams and Tables in the Beam Model A General Theory of Stream and Table Relativity Summary 7.The Practicalities of Persistent State Motivation The Inevitability of Failure Correctness and Efficiency Implicit State Raw Grouping Incremental Combining Generalized State Case Study: Conversion Attribution Conversion Attribution with Apache Beam Summary 8.Streaming SQL What Is Streaming SQL? Relational Algebra Time-Varying Relations Streams and Tables Looking Backward: Stream and Table Biases The Beam Model: A Stream-Biased Approach The SQL Model: A Table-Biased Approach Looking Forward: Toward Robust Streaming SQL Stream and Table Selection Temporal Operators Summary 9.Streaming Joins All Your loins Are Belong to Streaming Unwindowed loins FULL OUTER LEFT OUTER RIGHT OUTER INNER ANTI SEMI Windowed loins Fixed Windows Temporal Validity Summary 10.The Evolution of Large-Scale Data Processing MapReduce Hadoop Flume Storm Spark MillWheel Kafka Cloud Dataflow Flink Beam Summary Index

作者简介:

Tyler Akidau,是Google的高级软件工程师,担任着Data Processing Languages & Systems小组技术负责人的职务。他也是Apache Beam PMC的创始成员。 Slava Chernyak,是Google的高级软件工程师。他花了六年时间研究Google内部的大规模流式数据处理系统。 Reuven Lax,是Google的高级软件工程师,在过去十年间一直在帮助制定Google的数据处理和分析策略,同时他也是Apache Beam PMC的成员。

其它内容:

暂无其它内容!


下载点评

  • 神器(282+)
  • 宝藏(384+)
  • 错乱(518+)
  • 直链(590+)
  • 满意(341+)
  • 修订(120+)
  • 重排(254+)
  • 带目录(702+)
  • 稀缺(364+)
  • PDF(540+)
  • 幽默风趣(857+)
  • 如获至宝(291+)
  • 权威(834+)
  • MOBI(310+)
  • 加密(251+)
  • 干货(899+)
  • 朗读(227+)
  • 无乱码(462+)
  • 学生(801+)
  • 无广告(667+)

下载评论

  • 用户1739610111: ( 2025-02-15 17:01:51 )

    优质的期刊资源,音频设计提升阅读体验,值得收藏。

  • 用户1730903178: ( 2024-11-06 22:26:18 )

    极速下载AZW3/TXT文件,完整学术推荐收藏,值得收藏。

  • 用户1737409473: ( 2025-01-21 05:44:33 )

    完整的学术资源,图文设计提升阅读体验,资源优质。

  • 用户1740200779: ( 2025-02-22 13:06:19 )

    互动功能搭配MOBI/AZW3格式,无损数字阅读体验,操作便捷。

  • 用户1718359854: ( 2024-06-14 18:10:54 )

    极速下载PDF/TXT文件,无损学术推荐收藏,推荐下载。


相关书评