刘全保 著
人物简介:
刘全,苏州大学教授,博士生导师。 吉林大学博士, 南京大学软件新技术国家重点实验室博士后。苏州市人工智能学会常务理事、秘书长。2006年开始从事强化学习
领域的教学和科研工作。主讲研究生、本科生《强化学习》及相关课程16次。主持“深度强化学习方法研究”、“部分感知强化学习理论及方法”、“基于tableau的逻辑强化学习研究”等国家、省部级项目10余项。目前主要研究方向为:深度强化学习。
2012年获江苏省教工委优秀共产党员称号。2011年、2012年入选江苏省“六大人才”、江苏省“333”人才培养计划。
深度强化学习书籍相关信息
内容简介:
本书基于PyTorch框架,用通俗易懂的语言深入浅出地介绍了强化学习的基本原理,包括传统的强化学习基本方法和目前流行的深度强化学习方法。在对强化学习任务建模的基础上,首先介绍动态规划法、蒙特卡洛法、时序差分法等表格式强化学习方法,然后介绍在PyTorch框架下,DQN、DDPG、A3C等基于深度神经网络的大规模强化学习方法。全书以一个扫地机器人任务贯穿始终,并给出具有代表性的实例,增加对每个算法的理解。全书配有PPT和视频讲解,对相关算法和实例配有代码程序。
全书共分三部分: 第一和第二部分(第1~8章)为表格式强化学习部分,着重介绍深度强化学习概述、环境的配置、数学建模、动态规划法、蒙特卡洛法、时序差分法、n步时序差分法、规划和蒙特卡洛树搜索; 第三部分(第9~14章)为深度强化学习部分,着重介绍深度学习、PyTorch与神经网络、深度Q网络、策略梯度、基于确定性策略梯度的深度强化学习、AC框架的拓展。全书提供了大量的应用实例,每章章末均附有习题。
本书既适合作为高等院校计算机、软件工程、电子工程等相关专业高年级本科生、研究生的教材,又可为人工智能、机器学习等领域从事项目开发、科学研究的人员提供参考。
全格式电子版 - 免费下载