王晓华

人物简介:

王晓华,高校计算机专业讲师,研究方向为云计算、大数据与人工智能。其著作包括《深入探索Mamba模型架构与应用》《PyTorch深度学习与计算机视觉实践》《PyTorch语音识别实战》《ChatGLM3大模型本地化部署、应用开发与微调》《从零开始大模型开发与微调:基于PyTorch与ChatGLM》《PyTorch 2.0深度学习从零开始学》《Spark 3.0大数据分析与挖掘:基于机器学习》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》《TensorFlow语音识别实战》《TensorFlow 2.0卷积神经网络实战》《深度学习的数学原理与实现》。

DeepSeek大模型高性能核心技术与多模态融合开发书籍相关信息


内容简介:

本书深入剖析国产之光DeepSeek多模态大模型的核心技术,从高性能注意力机制切入,深入揭示DeepSeek的技术精髓与独特优势,详细阐述其在人工智能领域成功的技术秘诀。本书循序渐进地讲解深度学习注意力机制的演进,从经典的多头注意力(MHA)逐步深入DeepSeek的核心技术—多头潜在注意力(MLA)与混合专家模型(MoE)。此外,本书还将详细探讨DeepSeek中的多模态融合策略、技术及应用实例,为读者提供全面的理论指导与应用实践。本书配套所有示例源码、PPT课件、配图PDF文件与读者微信技术交流群。 本书共分15章,内容涵盖高性能注意力与多模态融合概述、PyTorch深度学习环境搭建、DeepSeek注意力机制详解(包括基础篇、进阶篇、高级篇及调优篇)、在线与本地部署的DeepSeek实战(如旅游特种兵迪士尼大作战、广告文案撰写与微调、智能客服等),以及多模态融合技术与实战应用(如Diffusion可控图像生成、多模态图文理解与问答、交叉注意力语音转换、端到端视频分类等)。 本书既适合DeepSeek核心技术初学者、注意力机制初学者、大模型应用开发人员、多模态融合开发人员、大模型研究人员,也适合高等院校及高职高专院校人工智能大模型方向的师生。