焦李成

人物简介:

暂无相关内容,正在全力查找中


深度学习、优化与识别书籍相关信息

  • ISBN:9787302473671
  • 作者:焦李成
  • 出版社::清华大学出版社
  • 出版时间:2017-6
  • 页数:暂无页数
  • 价格:暂无价格
  • 纸张:暂无纸张
  • 装帧:暂无装帧
  • 开本:暂无开本
  • 语言:暂无语言
  • 适合人群:研究生、博士生、计算机科学与技术领域研究人员、人工智能工程师、数据科学家、对机器学习感兴趣的程序员及爱好者
  • TAG:算法分析 / 人工智能 / 机器学习 / 图像识别 / 优化算法 / 深度神经网络
  • 豆瓣评分:6.2
  • 更新时间:2025-05-10 04:35:26

内容简介:

《深度学习、优化与识别》的特色 深度学习是计算机科学与人工智能的重要组成部分。全书16章,分为理论与实践应用两部分,同时介绍5种深度学习主流平台的特性与应用,最后给出了深度学习的前沿进展介绍,另附带47种相关网络模型的实现代码。本书具有以下的特点: 一、内容系统全面 全书16章,覆盖了深度学习当前出现的诸多经典框架或模型,分为两个部分。第一部分系统地从数据、模型、优化目标函数和求解等四个方面论述了深度学习的理论及算法,如卷积神经网络、深度生成模型等;第二部分基于5种主流的深度学习平台给出了深度网络在自然图像、卫星遥感影像等领域的应用,如分类、变化检测、目标检测与识别等任务。另外给出了深度学习发展的脉络图及最新研究进展,提供可基于5种平台实现的47中深度网络代码,以便有兴趣的读者进一步钻研探索。 二、叙述立场客观 作为深度学习的入门教材,尽可能不带偏见地对材料进行分析、加工以及客观介绍。本书理论部分均从模型产生的本源来介绍,并给出各个经典模型之间内在的相互联系。本书实践应用部分对相关任务做了详尽的分析,并给出深度学习应用实践的经验总结。 三、设计装帧精美 该书设计人性化,文字、公式、数学符号混排格式美观精致,特别是,全书采用全彩印制,软精装装帧。封面设计清新却不脱俗、学术化,足可以看出出版社和作者的用心。 内容简介 书籍 计算机书籍 深度神经网络是近年来受到广泛关注的研究方向,它已成为人工智能2.0的主要组成部分。本书系统地论述了深度神经网络基本理论、算法及应用。全书共16章,分为两个部分;第一部分(第1章~10章)系统论述了理论及算法,包括深度前馈神经网络、深度卷积神经网络、深度堆栈神经网络、深度递归神经网络、深度生成网络、深度融合网络等;第二部分(第11~15章)论述了常用的深度学习平台,以及在高光谱图像、自然图像、SAR与极化SAR影像等领域的应用;第16章为总结与展望,给出了深度学习发展的历史图、前沿方向及最新进展。每章都附有相关阅读材料及仿真代码,以便有兴趣的读者进一步钻研探索。 本书可为高等院校计算机科学、电子科学与技术、信息科学、控制科学与工程、人工智能等领域的研究人员提供参考,以及作为相关专业本科生及研究生教学参考书,同时可供深度学习及其应用感兴趣的研究人员和工程技术人员参考。