代数

内容简介:
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。
目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。
读者对象:数学专业研究生和科研人员.
书籍目录:
Preface
Acknowledgments
Suggestions on the Use of This Book
Introduction: Prerequisites and Preliminaries
1. Logic
2. Sets and Classes
3. Functions
4. Relations and Partitions
5. Products
6. The Integers
7. The Axiom of Choice, Order and Zorn's Lemma
8. Cardinal Numbers
Chapter I: Groups
1. Semigroups, Monoids and Groups
2. Homomorphisms and Subgroups
3. Cyclic Groups
4. Cosets and Counting
5. Normality, Quotient Groups, and Homomorphisms
6. Symmetric, Alternating, and Dihedral Groups
7. Categories: Products, Coproducts, and Free Objects
8. Direct Products and Direct Sums
9. Free Groups, Free Products, Generators & Relations
Chapter Ⅱ: The Structure of Groups
l. Free Abelian Groups
2. Finitely Generated Abelian Groups
3. The KruU-Schmidt Theorem
4. The Action of a Group on a Set
5. The Sylow Theorems
6. Classification of Finite Groups
7. Nilpotent and Solvable Groups
8. Normal and Subnormal Series
Chapter Ⅲ: Rings
1. Rings and Homomorphisms
2. Ideals
3. Factorization in Commutative Rings
4. Rings of Quotients and Localization
5. Rings of Polynomials and Formal Power Series
6. Factorization in Polynomial Rings
Chapter IV: Modules
1. Modules, Homomorphisms and Exact Sequences
2. Free Modules and Vector Spaces
3. Projective and lnjective Modules
4. Horn and Duality
5. Tensor Products
6. Modules over a Principal Ideal Domain
7. Algebras
Chapter V: Fields and Galois Theory
I. Field Extensions Appendix: Ruler and Compass Constructions
2. The Fundamental Theorem Appendix: Symmetric Rational Functions
3. Splitting Fields, Algebraic Closure and Normality Appendix: The Fundamental Theorem of Algebra
4. The Galois Group of a Polynomial
5. Finite Fields
6. Separability:
7. Cyclic Extensions
8. Cyclotomic Extensions
9. Radical Extensions Appendix: The General Equation of Degree n
Chapter Ⅵ: The Structure of Fields
1. Transcendence Bases
2. Linear Disjointness and Separability
Chapter Ⅶ: Linear Algebra
1.Matrices and Maps
2. Rank and Equivalence Appendix: Abelian Groups Defined by Generators and Relations
3. Determinants
4. Decomposition of a Single Linear Transformation and Similarity.
5. The Characteristic Polynomial, Eigenvectors and "Eigenvalues
Chapter Ⅷ: Commutative Rings and Modules
1. Chain Conditions
2. Prime and Primary Ideals
3. Primary Decomposition
4. Noetherian Rings and Modules
5. Ring Extensions
6. Dedekind Domains
7. The Hilbert NullsteUensatz
Chapter IX: The Structure of Rings
1. Simple and Primitive Rings
2. The Jacobson Radical
3. Semisimple Rings
4. The Prime Radical; Prime and Semiprime Rings
5. Algebras
6. Division Algebras
Chapter X: Categories
1. Functors and Natural Transformations
2. Adjoint Functors
3. Morphisms
List of Symbols
Bibliography
index
作者简介:
美国克利夫兰州立大学(Cleveland State University)数学系教授,著有《代数》等几十部教材或专著。
其它内容:
暂无其它内容!
下载评论
-
用户1717767514:
( 2024-06-07 21:38:34 )
音频功能搭配PDF/AZW3格式,无损数字阅读体验,资源优质。
-
用户1727077863:
( 2024-09-23 15:51:03 )
高清版本报告资源,PDF/TXT格式适配各种阅读设备,操作便捷。
-
孔***旋:
( 2024-05-26 13:40:44 )
很好。顶一个希望越来越好,一直支持。
-
用户1734411883:
( 2024-12-17 13:04:43 )
优质版本小说资源,MOBI/TXT格式适配各种阅读设备,推荐下载。
-
用户1715725537:
( 2024-05-15 06:25:37 )
秒传下载MOBI/AZW3文件,完整学术推荐收藏,体验良好。
相关书评
暂时还没有人为这本书评论!
下载点评