沃新书屋 - Python for Data Analysis - 作者:Wesly McKinney

Wesly McKinney

人物简介:

暂无相关内容,正在全力查找中


Python for Data Analysis书籍相关信息

  • ISBN:9781549329784
  • 作者:Wesly McKinney
  • 出版社:O'Reilly Media
  • 出版时间:2013-6-16
  • 页数:450
  • 价格:暂无价格
  • 纸张:暂无纸张
  • 装帧:Paperback
  • 开本:暂无开本
  • 语言:暂无语言
  • 适合人群:Data Analysts, Data Scientists, Data Engineers, Business Analysts, Researchers, Students in Computer Science or Data-related fields, Finance Professionals, Marketing Analysts
  • TAG:Python / statistics / data analysis / Data Science / Data Visualization / NumPy / Pandas / Data Handling
  • 豆瓣评分:7.9
  • 更新时间:2025-05-01 04:27:07

内容简介:

这本书主要是用 pandas 连接 SciPy 和 NumPy,用pandas做数据处理是Pycon2012上一个很热门的话题。另一个功能强大的东西是Sage,它将很多开源的软件集成到统一的 Python 接口。 Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you’ll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language. Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It’s ideal for analysts new to Python and for Python programmers new to scientific computing. Use the IPython interactive shell as your primary development environment Learn basic and advanced NumPy (Numerical Python) features Get started with data analysis tools in the pandas library Use high-performance tools to load, clean, transform, merge, and reshape data Create scatter plots and static or interactive visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Measure data by points in time, whether it’s specific instances, fixed periods, or intervals Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples