适合人群:statisticians, data scientists, mathematicians, researchers in the field of statistics, students of applied mathematics and statistics, professionals working with data analysis and machine learning
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice
Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms.
An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features:
• New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors
• Additional problems and chapter-end practice exercises at the end of each chapter
• Extensive examples that are familiar and easy to understand
• Self-contained chapters for flexibility in topic choice
• Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices
Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics.
ISBN:9781119092483
出版日期:2016-6-20 适合人群:statisticians, data scientists, mathematicians, researchers in the field of statistics, students of applied mathematics and statistics, professionals working with data analysis and machine learning